

Problem Solving

1. If $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$ and the angle between \mathbf{a} and \mathbf{b} is 60° , calculate

a) $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b})$ b) $\mathbf{b} \cdot (\mathbf{a} + \mathbf{b})$

2. If $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ evaluate $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$

3. $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 1 \\ 4 \\ x \end{pmatrix}$. Find x if $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{a}$

4. $\mathbf{a} = 2\mathbf{u} + 3\mathbf{v}$ where \mathbf{u} and \mathbf{v} are vectors of unit lengths inclined at $\frac{1}{3}\pi$ to each other.

a) Calculate $\mathbf{u} \cdot \mathbf{u}$, $\mathbf{v} \cdot \mathbf{v}$ and $\mathbf{a} \cdot \mathbf{a}$. b) What is the value of $|\mathbf{a}|$?

5. In an equilateral triangle \mathbf{ABC} , $\overrightarrow{\mathbf{AB}}$ represents \mathbf{p} and $\overrightarrow{\mathbf{AC}}$ represents \mathbf{q} . If each side is 2 units long, evaluate $\mathbf{p} \cdot \mathbf{q}$. What would be the answer if \mathbf{q} was represented by $\overrightarrow{\mathbf{CA}}$ instead?

Answers

1. a) 7 b) 12

2. 8

3. $x = 6$

4. a) 1 1 19 b) $\sqrt{19}$

5. 2 -2

Answers

1. a) 7 b) 12

2. 8

3. $x = 6$

4. a) 1 1 19 b) $\sqrt{19}$

5. 2 -2